## Investigating Quadratic Relations - Modelling a Business' Revenue

- a. A hockey arena seats 1600 people. The cost of a ticket is \$10. At this price, every ticket is sold. To increase revenue, the arena management plans to increase ticket prices. They conduct a survey and determine that for a 50 cent increase in price, 50 less people will attend
  - i. What is the initial cost of a ticket?
  - ii. What is the initial number of people attending the game?
  - iii. What revenue/income does the hockey arena make?
  - iv. One price increment of \$0.50 is made. What is the new ticket price?
  - v. How many people attend the game now?
  - vi. What revenue/income does the hockey arena make?
  - vii. Two price increments of \$0.50 are made. What is the new ticket price?
  - viii. How many people attend the game now?
  - ix. What revenue/income does the hockey arena make?
  - x. Three price increments of \$0.50 are made. What is the new ticket price?
  - xi. How many people attend the game now?
  - xii. What revenue/income does the hockey arena make?
- b. Continue this pattern to complete a data table

| # of price increments | Ticket price | Number of people attending | Revenue/income |
|-----------------------|--------------|----------------------------|----------------|
| 0                     | 10           | 1,600                      | 16,000         |
| 1                     |              |                            |                |
| 2                     |              |                            |                |
| 3                     |              |                            |                |
| 4                     |              |                            |                |
| 5                     |              |                            |                |
| 6                     |              |                            |                |
| 7                     |              |                            |                |
| 8                     |              |                            |                |
| 9                     |              |                            |                |
| 10                    |              |                            |                |

- c. What type of a relation is "ticket price"? Write an equation for determining the ticket price.
- d. What type of a relation is "number of people attending"? Write an equation for determining the number of people attending.
- e. What type of relation is "revenue"? Write an equation for determining the revenue for the arena.
- f. Graph the data on the partial grid provided.



- g. Now graph the complete relation from either (a) the equation or (b) from technology
  - i. **Technology** Let's look at the two data sets ( $x \rightarrow \#$  of price increments;  $y \rightarrow \#$  revenue)

Go to STAT – EDIT to enter the data

Enter the x/y data in L1 and L2

STAT - CALC - 5 (QUADREG)









## **ANALYSIS QUESTIONS:**

| h. | Evaluate the revenue if x = 15.                                                 |
|----|---------------------------------------------------------------------------------|
| i. | When will the revenues be \$16,500? When will it be \$13,300                    |
|    |                                                                                 |
| j. | Determine the domain and range of this relation                                 |
| k. | Determine and interpret the y-intercept of this relation.                       |
|    |                                                                                 |
| I. | Determine the co-ordinates of the maximum point of this relation and interpret. |
| m. | Determine the zeroes/x-intercepts of this relation and interpret.               |
|    |                                                                                 |
| n. | Draw in the axis of symmetry of this relation. What IS an axis of symmetry?     |