(A) Lesson Context

BIG PICTURE of this UNIT:	 How can I analyze growth or decay patterns in data sets & contextual problems? How can I algebraically & graphically summarize growth or decay patterns? How can I compare & contrast linear and exponential models for growth and decay problems. 				
CONTEXT of this LESSON:	Where we've been	Where we are	Where we are heading		
	In Lessons 5 & 6, you	How can we solve	How can I use algebra, data		
	looked at how	exponential equations that	tables, graphs & equations to		
	exponential equations	arise when we model growth	make predictions about scenarios		
	can be used to model	& decay patterns	which feature exponential		
	real world scenarios		growth & decay?		

(A) Lesson Objectives

- a. Review and apply one key exponent law \rightarrow if $b^x = b^y$, then x = y in the context of exponential equations
- b. Use algebraic strategies to solve Exponential Exponential Systems & Exponential Constant Systems using multiple representation strategies
- c. Use multiple representations to verify algebraic solutions
- d. Solve Exponential Linear Systems using multiple representation strategies
- e. Apply Exponential Equations/Systems to real world applications

(B) Exponential Equations - Opening Example: Investigation #1

a. Use ALGEBRAIC METHODS to solve and verify these equations. Finally, use your TI-84 to graphically verify.

(a) Solve and verify $2^{3-x} = 2^4$	(b) Solve and verify $2^{x-3} = 2^{3x+1}$
(c) Solve and verify $2^{2x+3} = 16$	(d) Solve and verify $8^x = 16^{x-1}$

(C) <u>Exponential – Constant Systems</u>

EXPLORATORY EXAMPLE #1 \rightarrow Solve the equation $2^{1-2x} = 8$. Verify your solution.

Algebraic Solution

Verification:

Graphic Solution

KEY CONCEPT →

and let $y_2 =$ Let $y_1 =$

EXPLORATORY EXAMPLE #2 Solve the equation $4^{1+x} = 2$. Verify your solution.

Algebraic Solution

Verification:

Graphic Solution

KEY CONCEPT →

Let $y_1 =$ and let $y_2 =$

(D) Exponential – Constant Systems

EXPLORATORY EXAMPLE #3 Solve the equation $3^{x+2} = \frac{1}{9}$. Verify your solution.

Algebraic Solution

Verification:

Graphic Solution

KEY CONCEPT →

Let $y_1 =$ and let $y_2 =$

EXPLORATORY EXAMPLE #4 Solve the equation $4^{2-x} = 5$. Verify your solution.

Algebraic Solution

Verification:

Graphic Solution

KEY CONCEPT →

Let y₁ = and let $y_2 =$

(E) <u>Exponential – Exponential Systems</u>

EXPLORATORY EXAMPLE #1 \rightarrow Solve the equation $2^{3-2x} = 2^x$. Verify your solution.

Algebraic Solution

Verification:

Graphic Solution

KEY CONCEPT →

Let
$$y_1 =$$
 and let $y_2 =$

EXPLORATORY EXAMPLE #1 \rightarrow Solve the equation $4^{x-1} = 2^x$. Verify your solution.

Algebraic Solution

Verification:

Graphic Solution

KEY CONCEPT →

Let y₁ = and let $y_2 =$

(F) Exponential – Exponential Systems

EXPLORATORY EXAMPLE #1 Solve the equation $\left(\frac{1}{4}\right)^{2x+1} = \left(\frac{1}{8}\right)^{3-x}$. Verify your solution.

Algebraic Solution

Verification:

Graphic Solution

KEY CONCEPT →

and let $y_2 =$ Let $y_1 =$

EXPLORATORY EXAMPLE #3 Solve the equation $3^{2x-2} = 2^x$. Verify your solution.

Graphic Solution

Let f(x) =and let g(x) =

	11 y		
	10		
	9		/
	7	 	
	6	 	
	4		
	3		
	2		
 3 2		1 2	X

Numeric Solution

f(x) g(x)

Algebraic Solution

KEY CONCEPT →

Verification:

(G)Closing Investigation

My brother works as an electrician and runs his own company. In the first year of running his business, he earned total revenues of \$250,000 and he now estimates that his annual revenue has been increasing at a rate of 30% of the previous year's revenues. He also realizes that his business has expenses, which he estimated at \$100,000 for his first year of running his business. However his expenses have been increasing at a constant, fixed amount of \$55,000 every year. You will analyze the

	profitability of his business using appropriate mathematical modeling.
i.	Write an equation for his company's REVENUES. Graph this equation on your TI-84. (Window settings x \rightarrow 0-25 and y \rightarrow 0 – 1,000,000)
ii.	Write an equation for his company's EXPENSES. Graph this equation on the same axes as (i).
iii.	If you know a company's revenues and expenses, how do you determine its PROFITS?
iv.	Write an equation that will model the company's PROFITS.
v.	What is the company's profitability in the fifth year of operation?
vi.	What is the company's profitability in the 7 th year of operation?
/ii.	What do the intersection points represent?

viii. What ASSUMPTION are you making as you analyze my brother's company's profitability?