(A) Lesson Context

BIG PICTURE of this UNIT:	 How can I analyze growth or decay patterns in data sets & contextual problems? How can I algebraically & graphically summarize growth or decay patterns? How can I compare & contrast linear and exponential models for growth and decay problems. 					
	Where we've been Where we are Where we are heading					
CONTEXT of this LESSON:						
	In Lessons 5 & 6, you	How do we interpret and	How can I use graphs &			
	looked at how	analyze graphs of	equations that will help me make			
	exponential equations	exponential equations that	predictions about scenarios			
	can be used to model	model growth & decay	which feature exponential			
	real world scenarios patterns growth & decay?					

(A) Lesson Objectives:

- a. Understand the basic appearance and features of the graph of a simple exponential relation
- b. Make predictions/extrapolations through graphic analysis
- c. Understand the basic connection between the parameters in an equation and its appearance in a graph

(B) Graphs of Exponential Functions – REVIEW- The BASIC graph of $y = Ca^x + d$

a. Use your TI-84 (or use DESMOS) to graph the equation $y = 2^x$. Then sketch the graph on the attached grid. Fill in the included data table as well.

(C) Graphs of Exponential Functions - CONSOLIDATION of Skills - Changing the values of C & d in y = Cax + d

WITHOUT using your TI-84, graph the equation $y = 2^x$. Then on the same graph, graph the following equations in order to compare the appearance of the graphs & compare the data points.

Equation to graph: $y = -(2)^x + 3$

Equation to graph: $y = (2)^{-x} - 2$

Data table:

-3	-2	-1	0	1	2	3

Data table:

-3	-2	-1	0	1	2	3

Equation to graph: $y = 4(2)^x + 5$

Equation to graph: $y = -1 + \frac{1}{3}(2)^x$

Data table:

-3	-2	-1	0	1	2	3

Data table:

-3	-2	-1	0	1	2	3

Equation to graph: $y = -2(2)^x + 6$

Equation to graph: $y = \frac{1}{2}(2)^{-x} - 4$

Data table:

-3	-2	-1	0	1	2	3

Data table:

-3	-2	-1	0	1	2	3

(D) Graphs of Exponential Functions - CONSOLIDATION of Skills - Changing the values of C & d in y = Cax + d

WITHOUT using your TI-84, graph the equation $y = 2^x$. Then on the same graph, graph the following equations in order to compare the appearance of the graphs & compare the data points.

Equation to graph: $y = -\left(\frac{1}{2}\right)^2 + 1$

Equation to graph: $y = \left(\frac{1}{2}\right)^{-x} - 3$

Data table:

-3	-2	-1	0	1	2	3

Data table:

-3	-2	-1	0	1	2	3

Equation to graph: $y = 8\left(\frac{1}{2}\right)^{x} - 4$

Equation to graph: $y = -2 + \frac{1}{4} \left(\frac{1}{2} \right)^x$

Data table:

-3	-2	-1	0	1	2	3

Data table:

-3	-2	-1	0	1	2	3

Equation to graph: $y = 5 - 3\left(\frac{1}{2}\right)$

Equation to graph: $y = \frac{3}{2} + \frac{1}{2} \left(\frac{1}{2}\right)^{-x}$

Data table:

-3	-2	-1	0	1	2	3

Data table:

-3	-2	-1	0	1	2	3

(E) Consolidation of Concepts

Without a graphing calculator, use your understanding of the concepts that you learned in order to prepare a (i) data table and a (ii) graph of the following equations:

$Y = -3(2)^{x} + 5$	$Y = -4 + \frac{1}{2}(2)^{-x}$.