(A) Lesson Context | BIG PICTURE of this UNIT: | How can I analyze growth or decay patterns in data sets & contextual problems? How can I algebraically & graphically summarize growth or decay patterns? How can I compare & contrast linear and exponential models for growth and decay problems. | | | |---------------------------|--|----------------------------|----------------------------------| | | Where we've been | Where we are | Where we are heading | | CONTEXT of this LESSON: | | | | | | In Lessons 5 & 6, you | How do we interpret and | How can I use graphs & | | | looked at how | analyze graphs of | equations that will help me make | | | exponential equations | exponential equations that | predictions about scenarios | | | can be used to model | model growth & decay | which feature exponential | | | real world scenarios | patterns | growth & decay? | | | | | | #### (A) Lesson Objectives: - a. Understand the basic appearance and features of the graph of a simple exponential relation - b. Make predictions/extrapolations through graphic analysis - c. Understand the basic connection between the parameters in an equation and its appearance in a graph #### (B) Graphs of Exponential Functions – Investigation #1- The BASIC graph of y = Ca^x a. Use your TI-84 (or use DESMOS) to graph the equation $y = 2^x$. Then sketch the graph on the attached grid. Fill in the included data table as well. # (C) <u>Graphs of Exponential Functions – Investigation #2 – Changing the value of C in y = Ca^x </u> Use your TI-84 (or use DESMOS) to graph the equation $y = 2^x$. Then on the same graph, graph the following equations in order to compare the appearance of the graphs & compare the data points. | Equation to | Sketch | Compare the two graphs | Compare the two data tables | |-------------------------|----------------------------------|---|-----------------------------| | graph | | | | | Y = 2(2) ^x | Y = 10(2) ^x | Y=0.5(2) ^x | | | | | 1-0.5(2) | Y = 0.1(2) ^x | Describe the ef |
fect of changing the value o | <u> </u>
f C in the equation y = Ca ^x . | | | | | · , | | | | | | | # (D) Graphs of Exponential Functions – Investigation #3 – Changing the value of a in $y = Ca^x$ a. Use your TI-84 (or use DESMOS) to graph the equation $y = 2^x$. Then on the same graph, graph the following equations in order to compare the appearance of the graphs & compare the data points. | Equation to graph | Compare the two graphs | Compare the two data tables | |--------------------------------|--|-----------------------------| | $Y = (3)^{x}$ | $Y = (5)^{x}$ | Y=(½) ^x | | | | | | | | | | | | | | | | V = 11/1 ^X | | | | $Y = (\frac{1}{4})^{x}$ | | | | | | | | | | | | | | | | Describe the effect of chang | ing the value of a in the equation y = Ca ^x . | | | Describe the effect of cliding | ing the value of a in the equation y - ca . | | | | | | | | | | # (E) <u>Graphs of Exponential Functions – Investigation #4 – Changing the signs in $y = Ca^x$ </u> a. Use your TI-84 (or use DESMOS) to graph the equation $y = 2^x$. Then on the same graph, graph the following equations in order to compare the appearance of the graphs & compare the data points. | Equation to graph | Compare the two graphs | Compare the two data tables | |-----------------------------|--|-----------------------------| | Y = -(2) ^x | Y = (2) ^{-x} | Y=(-2) ^x | Describe the effect of chan | ging the signs in the equation y = Ca ^x . | | | | | | | | | | | | | | # (F) Graphs of Exponential Functions – Investigation #5 – Introducing a shift in y = Ca^x a. Use your TI-84 (or use DESMOS) to graph the equation $y = 2^x$. Then on the same graph, graph the following equations in order to compare the appearance of the graphs & compare the data points. | Equation to graph | Compare the two graphs | Compare the two data tables | |---|------------------------|-----------------------------| | $Y = (2)^x + 3$ | $Y = (2)^x + 8$ | Y=(2) ^x - 3 | $Y = (2)^x - 7$ | Describe the effect of adding/subtracting another value in the equation y = Ca ^x + D | | | | | | | | İ | | | # (G)Consolidation of Concepts Without a graphing calculator, use your understanding of the concepts that you learned in order to prepare a (i) data table and a (ii) graph of the following equations: | $Y = -(2)^x + 5$ | $Y = -4 + \frac{1}{2}(2)^{-x}$. | |------------------|----------------------------------| |