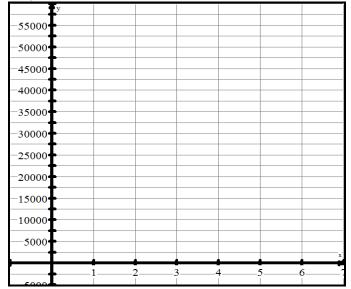
(A) Lesson Context

BIG PICTURE of this UNIT:	 How can I analyze growth or decay patterns in data sets & contextual problems? How can I algebraically & graphically summarize growth or decay patterns? How can I compare & contrast linear and exponential models for growth and decay problems. 					
CONTEXT of this LESSON:	Where we've been	Where we are	Where we are heading			
	In Lessons 1,2,3, you	How do we work with	How can I use equations that will			
	generated & analyzed	equations that model growth	help me make predictions about			
	data from a variety of	& decay patterns	scenarios which feature			
	activities		exponential growth & decay?			

(A) Lesson Objectives:


- a. Write exponential equations to model real world applications
- b. Make predictions/extrapolations through numeric or algebraic analysis
- c. Use multiple representations to solve the exponential equations that arise from real world applications
- (B) <u>Review</u> \rightarrow An Exponential equation has the form $Y = C(a)^x$ or $Y = C(1 + r)^x$, where C = initial value, a = initial value growth factor/common ratio. (It turns out that $\mathbf{a} = \mathbf{1} + \mathbf{r}$, where \mathbf{r} is the decimal value of % increase given).

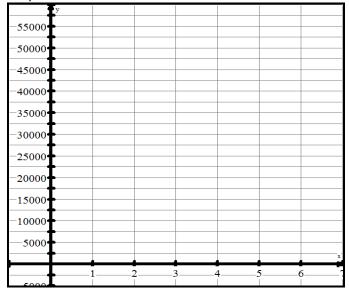
For the following equations, (i) decide if they can be used to model growth or decay and (ii) determine the rate at which the change happens.

Y = 200(1.15) ^x	
Y = 400(0.85) ^x	
Y = 100(2) ^x	
Y = 100(½) ^x	
Y = 200(1.05) ^x	
Y = 400(1.75) ^x	
Y = 100(0.75) ^x	
Y = 100(0.995) ^x	
Y = 1,000(0.30) ^x	
Y = 2500(1.5) ^x	

(C) <u>Opening Exploration</u> → Mr Santowski has been given a new job contract. He will earn \$40,000 per year and get a 6% raise per year for the next 5 years

DEFINE YOUR VARIABLES, then complete the tables

Data Table:


х			
У			

(c) I would like Mr. S's salary to be modelled with a linear relation. HOW would you change the original info so that a linear model can be used?

- (a) Write an equation for Mr. S's salary.
- (b) What does the y-intercept represent?
- (d) What would my salary be in 8 years?
- (e) After how many years would my salary be \$70,000?
- (f) What assumption are you making as you answer Qd,e?

(D)<u>Opening Exploration</u> → Mr Santowski has purchased a new car. It cost \$50,000 but its value depreciates at a rate of 12% raise per year for the next 6 years

DEFINE YOUR VARIABLES, then complete the tables

Data Table:

х			
У			

(c) I would like the value of Mr. S's car to be

can be used?

modelled with a linear relation. HOW would you change the original info so that a linear model

- (a) Write an equation for the value of Mr. S's car.
- (b) What does the y-intercept represent?
- (d) What would be the value of my car be in 8 years?
- (e) After how many years would the value of my car be \$7,000?
- (f) What assumption are you making as you answer Qd,e?

- **(E) Examples:** For each question, show your equation and a sketch of your graph.
- a. A colony of 1,000 ants can increase by 15% in a month.
 - i. How many ants will be in the colony after 10 months?
 - ii. How long will it take to get 7,500 ants in the colony?

- b. A population of 10 hamsters will triple every year.
 - i. What will be the population after 4 years?
 - ii. How long will it take to get 1,500 hamsters?
 - iii. Determine the WEEKLY growth rate for the hamsters.

- c. A baby weighing 7 pounds at birth may increase in weight by 11% per month.
 - i. How much will the baby weigh after 1 year?
 - ii. When will the baby weigh 18 pounds?
 - iii. Determine the approximate DAILY rate of growth for this infant.

- d. A deposit of \$1500 in an account pays interest 7.25% on the balance annually.
 - i. What is the account balance after 8 years?
 - ii. When will the value of the account be double its original value?

(F)	Examples:	For each q	uestion, show	your equation	n and a sk	etch of your	graph
-----	------------------	------------	---------------	---------------	------------	--------------	-------

- a. A colony of 100,000 ants is infected by a virus and decreases by 12% in a month.
 - i. How many ants will be in the colony after 10 months?
 - ii. How long will it take to get 25,000 ants in the colony?
 - iii. Determine the DAILY death rate for the ant colony.

- b. A sample of 100 g radioactive plutonium-238 has a half-life of 87.7 years, so it will exponentially decay every year.
 - i. Determine the YEARLY decay rate for plutonium.
 - ii. What amount will remain after 400 years?
 - iii. How long will it take to eliminate 95% of the plutonium?

- c. An investment of \$150,000 in an account loses value at a rate of 3.25% annually.
 - i. What is the account balance after 5 years?
 - ii. When will the value of the account be half its original value?

(G)Homework Links:

a. From the Nelson 12 text, Chap 2.3, p110-112, Q2,4,5,6,13,14,15