(A) Lesson Context

BIG PICTURE of this UNIT:	 mastery with algebraic manipulations/calculations involving linear systems proficiency in working with graphic and numeric representations of linear systems proficiency in working with linear systems in real world scenarios 		
CONTEXT of this LESSON:	Where we've been	Where we are	Where we are heading
	Lesson 4 reviewed graphic methods & Lesson 5 review the substitution method for solving linear systems	Consolidating skills in solving a linear systems algebraically	Mastery of solving & applying linear systems

(B) Lesson Objectives:

- a. Consolidate skills involved when solving linear systems using the elimination method.
- b. Solve word problems modelled by linear systems using algebraic methods

(C) Skill Consolidation – Algebra Skills → Addition/Subtraction of Equations

You know that two integers can be added, or subtracted:

$$\begin{array}{r}
 5 & 15 \\
 + \underline{7} & -\underline{6} \\
 12 & 9
 \end{array}$$

In the same way, equations can be added, or subtracted:

$$3x + 2y = 19$$

+ $5x - 2y = 5$
 $8x = 24$
$$10x + 20y = 80$$

- $10x + 15y = 25$
 $5y = 55$

Notice that by adding the equations in the first linear system, the y variable was eliminated (there were 0y), which makes it possible to solve for x.

By subtracting the equations in the second linear system, the x variable was eliminated (there were 0x), which makes it possible to solve for y.

1. Work in pairs to consider the following linear systems. Decide what operation – addition or subtraction – would result in the elimination of a variable.

$$9x + y = 4$$
$$14x + y = -1$$

$$3x - y = 50$$

 $12x + y = 115$

$$-7x - 6y = 338$$

 $9x + 6y = -366$

$$18x - 5y = 454$$

 $12x - 5y = 316$

$$19x + 2y = 102$$

 $19x - 2y = 50$

$$17x - 8y = 323$$

 $6x + 8y = 114$

$$9x - 4y = 235$$

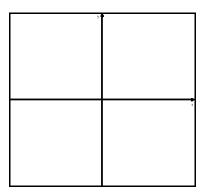
 $15x + 2y = 409$

$$7x - 16y = 441$$

 $7x - 17y = 476$

$$5x - 3y = 188$$

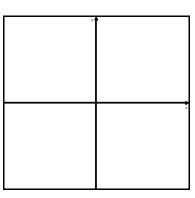
 $6x - 11y = 344$


2. What needs to be true about a linear system so that a variable is eliminated when the equations are added or subtracted?

(D) **ELIMINTION** Examples: Solve and verify the following linear systems:

/:\	2x - 2y - 14 = 0
(1)	2x - 2y - 14 = 0 $-2x + 4y - 4 = 0$

Algebraic Verification:


Graphic Verification:

(ii)
$$3x - 2y = 17$$
$$-6x - 2y = 8$$

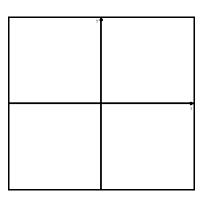
Algebraic Verification:

Graphic Verification:

(iii)
$$y + 4x = 9$$

 $3y - 6x = 9$

Algebraic Verification:


Graphic Verification:

y.	
	x

(iv)
$$-6x + 2y = -4$$

 $3x + y = 1$

Algebraic Verification:

Graphic Verification:

/	4x + 2y = 10
(v) Solve the systen	3y - 6x = 9

Algebraic Verification:

Graphic Verification:

y•	
	x

(E) Application of Linear Systems

❖ Ex 1. Guarantee Pool Repair Services charges \$50 for a service call and \$40/hour for labour. Oasis Pools and Spas charges \$30 for a service call plus \$45 for labour. Find the length of a service call for which both companies charge the same amount

EXPLAIN WHAT: the two variables should represent → let x be let y be

EXPLAIN WHY: the 2 equations are \Rightarrow y = 50 + 40x as well as y = 30 + 45x

❖ Ex 2. Regina is training for the upcoming cross country season. She needs to design a daily 45 minute workout using a combination of a stationary bike and a treadmill. To be in top shape, she should burn 400 calories in her workout. On a bike, she burns 8 cal/min and on the treadmill she burns 10 cal/min. How many minutes should she train on each piece of equipment?

EXPLAIN WHAT: the two variables should represent → let x be let y be

EXPLAIN WHICH PAIR OF EQUATIONS ARE CORRECT:

option (1)
$$\rightarrow$$
 x + y = 400 as well as 8x + 10y = 45

option (2)
$$\rightarrow$$
 x + y = 45 as well as $8x + 10y = 400$

Ex 3. As the owner of a banquet hall, you are in charge of catering a reception. There are 2 dinners: a chicken dish that costs \$16 and a beef dish that costs \$18. The 300 wedding guests have ordered the dinners in advance and the total cost to prepare the dinners is \$5256. How many of each type of dinner are you preparing?

EXPLAIN WHAT: the two variables should represent → let x be let y be

EXPLAIN WHICH PAIR OF EQUATIONS ARE CORRECT:

option (1)
$$\Rightarrow$$
 x + y = 300 as well as $16x + 18y = 5256$

option (2)
$$\rightarrow$$
 x + y = 5256 as well as $16x + 18y = 300$

❖ Ex 4. You are selling tickets for a musical at ISM. Student tickets cost \$5 and general admission tickets cost \$8. If you sell 500 tickets and collect \$3475, how many student tickets and how many general admission.

(A) HOMEWORK → For Further Practice:

a. Nelson 10 Chap 1.6, p54-55, Q4, 5, 6, 7, 9

(B) Extra Help →

- a. WORKED EXAMPLES at
 - http://infinity.cos.edu/algebra/ProblemsSolved/Chapter%2004/Chapter%204 Word%20Problems.pdf
- b. More worked and very well explained examples at http://www.algebra-class.com/solving-systems-ofequations.html
- c. Video Help #1 → http://www.youtube.com/watch?v=il2Mf5706hk
- d. Video Help #2 → http://www.youtube.com/watch?v=V-gmMeHiY5c&feature=reImfu

Video Links for Group #2

https://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/solving-systems-addition-elimination/v/solvingsystems-by-elimination-2

https://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/solving-systems-addition-elimination/v/additionelimination-method-1

https://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/solving-systems-addition-elimination/v/additionelimination-method-2

https://www.khanacademy.org/math/algebra/systems-of-eq-and-ineq/solving-systems-addition-elimination/v/additionelimination-method-3