## Lesson 28 - Arithmetic & Geometric Series

- (A) Lesson Objectives
  - a. Introduce the concept of & a formula for an arithmetic series
  - b. Introduce the concept of & a formula for a geometric series
- (B) Review of Key Ideas
  - a. Arithmetic Sequence
  - b. Geometric Sequence
  - c. Series
- (C) Examples Working with Arithmetic Series
  - a. Ex 1. Find the sum of the series 13 + 24 + 35 + ... + 156
  - b. Ex 2. For the series  $2 + 11 + 20 + 29 + \dots$ , find u and S
  - c. Ex 3. The fifth term of an arithmetic series is 9 and the sum of the first 16 is 480. Find the first three terms of the series.
  - d. Ex 4. In an arithmetic series of 50 terms, the 17th term is 53 and the 28th term is 86. Find the sum of the series.
  - e. ex 5. Shayla deposits \$128 into her account. Each week she deposits \$7 less than the previous week until she deposits her last deposit of \$2. What total amount did she deposit?
  - f. ex 6. Jayne buys 10 widgets on the Jan 1 , 15 on the 1 of Feb, 20 on the 1 of March, etc..... How many widgets has she acquired in 2 years? How long does it take her to acquire 5,000 widgets?
- (D) Examples Working with Geometric Series
  - a. ex 1. Find S<sub>o</sub>: (a) 2 6 + 18 54 + ..... (b) 200 + 100 + 50 + 25 + .....
  - b. ex 2. Find the total amount you make if you were paid a rupee a day, but the amount was doubled every day for a month
  - c. ex 3. Find the sum 1/16 + 1/4 + 1 + 4 + ... + 65536
  - d. Ex 4. The fifth term of a geometric series is 405 and the sixth term is 1215. Find the sum of the first nine terms.
  - e. ex 5. A ball drops from a height of 16 m and its height on the bounce is 5/8th of the previous maximum height. Determine the total height bounced by the ball after it touches the ground for the 7 bounce.

## Lesson 28 - Arithmetic & Geometric Series

- (E) Examples Working with Infinite Geometric Series
  - a. Given the series  $S = 200 + 100 + 50 + 25 \dots$ 
    - i. Determine S

- ii. Determine S
- iii. Determine S
- iv. Predict S
- 1,000,000
- b. The series  $\frac{1}{2} + \frac{1}{4} + \frac{1}{18} + \frac{1}{16} + \dots$  is an example of an infinite geometric series.
  - i. Determine the sum of this series.
  - ii. Is it possible to find the sum of any infinite geometric sequence? Explain.
  - iii. Under what conditions is it possible to find the sum of an infinite geometric sequence
- (F) Extra Help Links
  - a. Geometric Sequences & Series From West Texas A&M
  - b. Arithmetic Sequences & Series From West Texas A&M U
- (G) Homework
  - Ex 2E.1 #1ae;
  - Ex 2E.2 #1c, 2a, 3,5, 6, 11;
  - Ex 2E.3 #1bc, 2cd, 4, 6, 7
  - HW Ex 2F #1c, 3c, 4c, 5ab