Lesson 17 - Solving Quadratic Inequalities

Math 2 Honors - Santowski

Math 2 Honors – Santowski 10/5/2010

FAST FIVE

- > Solve the following question graphically:
- If the revenue (in millions of dollars) for a company is given by the equation $R(x) = -3x^2 + 26x$, where x is the number of items made (in thousands) and the expenses (in millions of dollars) are given by the equation C(x) = 8x + 18, determine the number of items that should be produced so that the company has a profit greater than zero.

Math 2 Honors - Santowski 10/5/2010

Lesson Objectives

- Write, solve, and graph a quadratic inequality in one variable
- Explore various methods for solving inequalities
- Apply inequalities with quadratics to modeling problems
- Write, solve, and graph a quadratic inequality in two variables

Math 2 Honors – Santowski 10/5/2010

Solving Inequalities → Strategies

- We will highlight several strategies to use when solving inequalities:
- (a) Algebraic with inequalities
- (b) Numerically with Sign charts
- (c) graphical

Math 2 Honors – Santowski 10/5/2010

(A) Strategy #1 - Algebraic - Zero Product Property

- Recall the zero product property → if the product of two numbers is zero, then either (or both) of the numbers must be a zero
- In mathematical symbols, if ab = 0, then a = 0 or/and b = 0
- So how does this apply (if it indeed does) to an inequality → if ab > 0, then?? or alternatively, if ab < 0, then???</p>
- So what must be true of a and b in this inequalities?

Math 2 Honors – Santowski 10/5/2010

(A) Strategy #1 - Algebraic - Zero Product Property

- Let's think about the statement ab < 0
- We are trying to think about two numbers that are being multiplied together, such that their product is less than zero → or that their product is negative
- This negative product happens if (i) either a < 0 and at the same time b > 0 (or rather if a is negative and b is positive) or (ii) b < 0 and at the same time a < 0 (or if b is negative and at the same time a is positive)

Math 2 Honors - Santowski 10/5/2010

(A) Strategy #1 - Algebraic - Zero **Product Property**

- Let's see how this works \rightarrow Solve (x + 2)(x 1) < 0
- So one of two conditions are true:
- (i) (x + 2) > 0 and (x 1) < 0
- So we have x > -2 and $x < 1 \rightarrow$ How can BOTH these be true \rightarrow only if $-2 < x < 1 \rightarrow$ set up a number line to show
- (ii) (x + 2) < 0 and (x 1) > 0
- So we have x < -2 and x > 1 \rightarrow How can BOTH these be true \rightarrow it can't!! \rightarrow set up a number line to show
- ▶ So there we have our solution \rightarrow (x + 2)(x 1) < 0 only if -2 < x < 1

(A) Strategy #1 - Algebraic - Zero **Product Property**

- Let's think about the statement ab > 0
- We are trying to think about two numbers that are being multiplied together, such that their product is more than zero > or that their product is positive
- This positive product happens if either (i) a > 0 and at the same time b > 0 (or rather if a and b are positive) or (ii) b < 0 and at the same time a < 0 (or if a and b are both negative)

(A) Strategy #1 - Algebraic - Zero **Product Property**

- Now change it to \rightarrow Solve (x + 2)(x 1) > 0
- So one of two conditions are true:
- (i) (x + 2) > 0 and (x 1) > 0So we have x > -2 and $x > 1 \rightarrow$ HOW can both these be true \rightarrow only if $x > 1 \rightarrow$ set up a number line to show
- (ii) (x + 2) < 0 and (x 1) < 0So we have x < -2 and x < 1 \rightarrow HOW can both these be true \rightarrow only if x < -2 \rightarrow set up a number line to show
- ▶ So there we have our solution \rightarrow (x + 2)(x 1) > 0 only if x < -2 or x > 1

Math 2 Honors - Santowski 10/5/2010

(B) Strategy #2 - Test Points

- Solve $x^2 + x 2 < 0$
- We will factor \rightarrow (x + 2)(x 1) < 0
- So our key domain values will be x = -2 and x = 1(WHY??)
- > So let's divide our domain into three "sets" and use a test point in each set:
- (i) x < -2 → test with x = -4 → observe that
- (ii) -2 < x < 1 → test with x = 0 → observe that ...
- (iii) $x > 1 \rightarrow$ test with $x = 2 \rightarrow$ observe that

Math 2 Honors - Santowski 10/5/2010

(B) Strategy #2 - Numeric - Sign Chart

- Show the solution to $x^2 + x 2 > 0$ by means of a table/chart technique that takes into account the domain as it is divided into its three intervals (in this case)
- So again I'll factor (x + 2)(x 1) > 0
- Then, I'll set up a sign chart as follows:

(B) Strategy #2 - Numeric - Sign Chart

- Solve $x^2 + x 2 > 0$ by means of a table/chart technique
- So again I'll factor:
- (x + 2)(x 1) > 0
- the domain is divided into three intervals (in this case)
- Then, I'll set up a sign chart as follows:

Factored quadratic

Sign chart

(B) Strategy #2 - Numeric - Sign Chart

- Solve $x^2 + x 2 < 0$ by means of a table/chart technique
- So again I'll factor: (x + 2)(x - 1) < 0
- the domain is divided into three intervals (in this case)
- Then, I'll set up a sign chart as follows:

	x < -2	-2 <x<1< th=""><th>X > 1</th></x<1<>	X > 1
(x + 2)	-ve	+ve	+ve
(x - 1)	-ve	-ve	+ve
Q(x)	+ve	-ve	+ve

Sign chart

Math 2 Honors - Santowski 10/5/2010

(C) Strategy #3 - Graphically

- Any inequality can be solved graphically, provided that we can generate the graph and then KNOW what we are looking for!
- So to solve $x^2 + x 2 > 0$ (or (x + 2)(x 1) > 0), we simply graph the system > $y = x^2 + x - 2$

the quadratic and the line y = 0 (which happens to be the x-

After we graph, what do we look for? → in our case, look where the quadratic is > the line > meaning where is the quadratic ABOVE the line!

(D) Inequalities & Completing the Square

- So how would we ALGEBRAICALLY work through the same question if we HAD to use the completing the square method
- So if $x^2 + x 2 > 0$
- Then $(x^2 + x + \frac{1}{4} \frac{1}{4}) 2 > 0$ And $(x + \frac{1}{2})^2 \frac{9}{4} > 0$
- And we finally get $(x + \frac{1}{2})^2 > 9/4$
- Now we can square root both sides (as the inverse operation of squaring)

Math 2 Honors - Santowski 10/5/2010

(D) Inequalities & Completing the Square

- > So this is where we need to be careful!!
- If $(x + \frac{1}{2})^2 > \frac{9}{4}$
- We clearly know that the square root of 9/4 is 3/2!
- But what is the square root of a number/expression that is squared \rightarrow CLEARLY the possibilities for the square root of the number $x+\frac{1}{2}$ are a positive number and also a negative number!!
- So how do we express the idea that the LS of our equation (our input) can be either a +ve or -ve, but yet return only a +3/2 as its output???? \rightarrow absolute value!!

(D) Inequalities & Completing the Square

- So from $(x + \frac{1}{2})^2 > 9/4$ we will write the next step of our solution as $|x + \frac{1}{2}| > \frac{3}{2}$
- Then +(x + $\frac{1}{2}$) > 3/2 → x > 1
- ▶ And $-(x + \frac{1}{2}) > \frac{3}{2} \times x < -2$
- As we expected from our other three solutions!

Practice Questions

- Solve the following inequalities (CALC INACTIVE) and verify GRAPHICALLY (Using CALC):
- (a) $2x^2 14x > -20$ (factoring)
- (b) $x^2 + 2x 5 \le 0$ (c/s)
- $(c) -x^2 + 3x + 3 < 0 (QF)$
- $(d) \frac{1}{2}(x + 3)^2 7 \ge -1$

Math 2 Honors - Santowski 10/5/2010

(E) Applications of Inequalities

- A rock is tossed into the air from a bridge over a river. Its height, h in meters, above the water after t seconds is $h(t) = -5(t-2)^2 + 45$.
- (a) From what height above the water was the rock tossed?
- (b) Find the maximum height of the rock and the time when this maximum height is reached.
- (c) Is the rock still in the air after 4.5 seconds. Show work. Explain your answer.
- (d) When does the rock hit the water?
- (e) For how many seconds is the rock ABOVE 33.75 m?

Math 2 Honors - Santowski 10/5/2010

(E) Applications of Inequalities

- The population of Mathopolis can be modeled by $P(t) = -0.5t^2 + 20t + 200$, where P is population in thousands and t is time in years from 1990 onward (i.e. t=0 is the year 1990)
- (b) Find the population in the year 2003
- (c) When was the population over 350,000?

Math 2 Honors – Santowski 10/5/2010

Homework

p. 334 # 15,17, 25,27,28,29, 39,43,51, 58-64

Math 2 Honors - Santowski 10/5/2010